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e The Clifford Group:

Cliffy = {g € U,.| gD(a, b)g" € WH,,, VD(a,b) € WH,, }
* It turns out that
g¢D(a,b)g’ = + D([a, b]Fg) where F, is a 2n X 2n binary matrix

« These so-called “Symplectic Matrices” I o must obey

F 0 [l”- FI — 0 [l”- \vd Cliff
i o g—_”n 0 g € Cliffy
e Qverall
1 000 _
| - - 1 1 0 O O 1|1 1
Cliff)/ WH,, = Sp(2n, ) = < 001 11’ _1 O_ 0 1_ >
0O 0 O 1_




Stabilizer Recap



Stabilizer Recap
« What does the binary symplectic representation buy us?



Stabilizer Recap
« What does the binary symplectic representation buy us?

An efficient way to represent stabilizer states/Clifford gates



Stabilizer Recap
« What does the binary symplectic representation buy us?

An efficient way to represent stabilizer states/Clifford gates

 Describe an n-qubit stabilizer state by its n stabilizer generators



Stabilizer Recap
« What does the binary symplectic representation buy us?

An efficient way to represent stabilizer states/Clifford gates

 Describe an n-qubit stabilizer state by its n stabilizer generators

{5,€ wH,

sily) = ly), 1 SJ'SZ”}
ly) <

{gen,=la bleF |1<j<n}



Stabilizer Recap

« What does the binary symplectic representation buy us?
An efficient way to represent stabilizer states/Clifford gates

 Describe an n-qubit stabilizer state by its n stabilizer generators

{5,€ wH,

sily) = ly), 1 SJ'SZ”}
ly) <
{genj =la bl; € 5"

1San}

« Updating this state after a Clifford Unitary g is also easy



Stabilizer Recap

« What does the binary symplectic representation buy us?
An efficient way to represent stabilizer states/Clifford gates

 Describe an n-qubit stabilizer state by its n stabilizer generators

{5,€ wH,

sily) = ly), 1 SJ'SZ”}
ly) <
{genj =la bl; € 5"

1San}
« Updating this state after a Clifford Unitary g is also easy

la bl—la blF,



Stabilizer Recap

« What does the binary symplectic representation buy us?
An efficient way to represent stabilizer states/Clifford gates

 Describe an n-qubit stabilizer state by its n stabilizer generators

{5,€ wH,

sily) =lw), 1 <j < 2”}
lw) < :
{genj — [Cl b]] - Ian

1San}
« Updating this state after a Clifford Unitary g is also easy

la bl—la blF,

e Leads to the Gottesman-Knill Theorem




Stabilizer Recap

« What does the binary symplectic representation buy us?
An efficient way to represent stabilizer states/Clifford gates

 Describe an n-qubit stabilizer state by its n stabilizer generators

{5,€ wH,

sily) =lw), 1 <j < 2”}
lw) < :
{genj — [Cl b]] - Ian

1San}
« Updating this state after a Clifford Unitary g is also easy

la bl—la blF,

e Leads to the Gottesman-Knill Theorem

Stabilizer circuits (Cliffords + Pauli Mmts) on stabilizer input are
efficiently/poly(n) simulable on a classical computer
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states as shown in Fig. |13

FIG. 13: Measurement to project the input onto |7/8). If the X measurement results in the —1
eigenstate, then the measurement projects the input onto the orthogonal state.

Consider preparation of logical |7/8) states. A version of
the purification scheme for |7/8) states given in [1] is analyzed by Bravyi and Kitaev [30] in
the context of “magic states distillation”. They show that magic states, which include |7 /8), are
distillable given a way of preparing them with probability of error below about 35 %, assuming
no error in Clifford group operations. o
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e Very shortly afterwards Bravyi+Kitaev generalized the problem

arXiv:quant-ph/0403025 [pdf, ps, other] @B 10.1103/PhysRevA.71.022316

Universal Quantum Computation with ideal Clifford gates and noisy ancillas
Authors: Sergei Bravyi, Alexei Kitaev

* Notation had not yet converged
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e |Looked at

1. Error Suppression

2. Threshold Error rates
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Threshold Error Rates for MSD

 Mainly of foundational interest, because if both

1. All states inside stabilizer polytope plus perfect Cliffords/mmts
are efficiently simulable (which is always true)

2. Any state outside stabilizer polytope plus perfect Cliffords/mmt
enable universal QC

Then would have a nice computational model with sharp threshold
between classical and quantum power.

 Open Questions after Bravyi & Kitaev:

A. d an MSD scheme distilling all states outside octahedron?
B. Geometry of useful/useless region for operations and thresholds?

C. Geometry of useful/useless region for qudit states/operations and
thresholds (i.e. which are most robust to noise ~ Magic Measure)
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» Reichardt: Tight in | T') direction 0)

* Campbell+Browne: Undistillable region in
direction probably unavoidable

e H+van Dam: All mixtures of unitaries outside
Clifford polytope lead to Universality

e Most noise-robust unitary is T

 Qudits: 7 generalizesto M (|T) —» M| +))

(diag(1,ie+2+4) p=2
A[n.b.r — < (],'(1.(/(1.62”-{-6’)-}—3(‘. 6(1—{—()'()—{—(3(') p= ‘ (f _ ()-'_“ '
|y ke p>3 (w=etilr)

» Noise-robust state (analogue of | I)) is

(11)=1p=1))\/2

* Most noise-robust unitary seems to be M
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e \eitch et al.: It turns out the
relevant object for odd -
dimensions is not the
stabilizer polytope (red) but
the Wigner polytope (hatched)

<1 —
(Quasiprobability ,
1T e
BN 2T
= .
6 / e

I [ 1) — |d — 1))/4/2 often
called Strange states | S)

W=
7

 Most negative, furthest
outside Wigner polytope
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 States with negativity are the Noncontextuality Inequalit
ones that can boost a P
Clifford computer to UQC

e Hetal.: They are also
exactly the states that can ,
display contextuality in an ot ,
experiment with stabilizer /
measurements on qudits

* Two notions of non- N
classicality coincide -

A. Computational

B. Foundational

* Extended in several ways by  Analagous results to qubits
Raussendorf and co-authors regarding (non-)tight

distillation in Face/Edge dirns
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Proper Magic Monotones
0)

T) =P

1l

1)

'T")-type magic state 'T") states (+Cliffords) enable 7" gates

* The cost of Magic State distillation suggests a precious resource
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 Borrowing an idea from Entanglement
Theory, we can decompose a
resourceful state into a linear
combination of free states

*NON-STABILIZER

STABILIZER

« H+Campbell: Leads to a quantity called
the Robustness of Magic £ (p)

R(p)= , min {2p+1fp=(p+1)p" —pp~}
pt.p~ EPstan
Resource Desiderata ... or take log’R
@ R(p) 21, (R(p€Psras) =1) o logR(p) > 0,
@ R(p1 @ p2) <R(p1)R(p2) @ logR(p1 @ p2) <logR(p1) + log R(p2)
@ R(Emanlp)) <R (p) @ logR (Esraslp)) < logR (p)

. = Well-behaved quantifier
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where columns of A are vertices of Pspap

n (/1 1 L1 1 ( | )

0) A= X100 PR - | ¥
Prob: A,sT.\n <},—> 0 0 0 0 1 —1 b l2

(Z) 1 -1 0 0 0 O \ 0 )




Robustness of Magic

To solve the geometrical problem for R(p) rewrite as Linear Program:

R(p) =min ||z||; subject to Az =

L I .
NYON -\l\lnllll" n

where columns of A are vertices of Pspap

ry /1 1 1 1 1 1 (1)
10) .4 _XxX)]J0 0 1 -10 0 _| &
Prob:  Astas vylo o o o 1 -1 b e
(Zzy \'1 =10 0 0 0 \ 0 )
N 1 1 1-+/2
Soln:  R(|1)) = |||l = V2 r=<0 BV Ml R )




Robusthess of Magic

To solve the geometrical problem for R(p) rewrite as Linear Program:

R(p) =min ||z||; subject to Az =b

® : 4
ON-STABILIZER

where columns of A are vertices of Pgiap

Iy /1 1 1 1 1 1 ( ! \
\ - .
10) . o (X) 10 0 1 -1 0 0O _| &
Prob:  Asmas Yy {o o o o 1 -1 | b s
(Zzy \'1 =1 0 0 0 0 \ 0 )
| 1 1 1—+/2
Soln: R(|1)) = ||z|h =Vv2: z=/[0,0,—.0, -, V2
V2 2t 2
Dual: min ||z||, = max —bly gives Witness
Az=b || ATyl <1

» Straightforward using e.g. CVX or similar

* Problem size grows rapidly in qubits: {6,60,1080,36720,2423520,...}
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1. Realize that

a quantum circuit with 7 1" gates is equivalent to
a purely Clifford circuit acting on 7 magic states |T')

1) ~-{m)

T— — &— S

2. Adapt the efficient classical simulation schemes for Clifford circuits

to allow magic state inputs e.g., input= |0)®" 7 |T)®”

Robustness gives a quasiprobability distribution over stabilizer states:

R(p) = min {Z zil; p = sz (Stabilizer State)i} Z:cz =1

(5

Simulation takes longer to converge to desired accuracy (Chernoff-Hoeffding)

2 2
Require 5—2( E ;|)? In (—) samples to get d-close to real dist. with prob 1 — ¢
, €
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1. Realize that

a quan/ oates Is equivalent to

a pure ~~ic states |T°
P 7‘2(/-759)2‘7~ | >

2. Adapt th Q(/

to allow

~ 1
Simulation takes longer to converge to dé y 6857' ‘Hoeffding)

2 2
Require 5—2(2 ;|)? In (—) samples to get d-close to with prob 1 — €

€

= Robustness has operational meaning as the classical simulation overhead
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Low Rank Stabilizer Decompositions

* Following Bravyi+Smith+Smolin, Bravyi+Gosset can decompose
Magic States (as kets) into linear combination of Stabilizer kets

W)= ) xls) xeC

j=1

» Stabilizer rank is the minimum 7 such that above holds ( w | |x]])

* An approximate version of stabilizer rank is also useful for weak sim
 Approx Stab Rank is closely related to another Magic Monotone

« Extent:

E(|y)) = min x| ]7
) xll,: )= 3, xls) 1

» Morally similar to Ax = b calculation for Robustness, except rows of
A are now stabilizer kets. Optimisation is a SOCP.
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Low Rank Stabilizer Decompositions
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Low Rank Stabilizer Decompositions

[U]0=") — ) || < 6
S | 19) = XG0

B

 Can decompose diagonal non-Cliffords into Cliffords

* E.g. Every time we encounter a CC/Z, roll a D8

. Close to true w.h.p if choose (| | x| |1/5)2 paths
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Stabilizer Nullity

 One downside of Robustness and Extent is that they characterise
) = —2=10) + €1 1) as having Z(|y)). &(1w) ~ |

e A different monotone is better at capturing the non-stabilizerness

» n-qubit stabilizer state | ) has n independent commuting Pauli P

Ply) = |y)

« Stabilizer nullity v of generic pure state measures how far from this
v(|w)) =n—log, |{P: Ply) = |y)}]
 Another useful feature not present in £, & is that v is additive

v(ly) & 19)) = v(ly)) +v(|¢))
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Applications of Magic Monotones
* Near-Clifford circuit/physics simulations

 Limits of Magic State Distillation routines? ( 102 <e< 10_20)

* Magic Redistribution: State/Circuit Synthesis

« CCZ (equivalent to Toffoli): Supercomputer proof 7 1" gates needed
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* Ancilla-assisted synthesis is powerful, practical but hard to prove
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Application of Monotones to Synthesis

* For example, using robustness we can analyse the following

T) @ my
s Tle—e— oSl e o
CS5 = 15— Td} B oIS d} ° S@
T) —b-{rma)
T) Y Hms]

For U in the 3rd level of the Clifford hierarchy U < |U) := U| + )

Compare robustness of target, Z( | U)) with Z( | T)®?)

Calculate and find: Z(| T)Y®?) < Z(| CS)) < R(|T)®?)

1.747 < 22 < 2219

N

« Meaning: impossible to compile CS with fewer than 3 T gates



Application of Monotones to Synthesis
* Also works for the ancilla-assisted case
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. Calculate and find: Z(| T)®%) < Z(| CCZ)) < R(|T)®H

« Meaning: impossible to compile CCZ with fewer than 4 T gates

* The above construction is 7T-optimal
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» Robustness lead to alternative 7T-optimal circuit constructions
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e Stabilizers comprise an interesting class of circuits that seem to be
as large as possible while still being classically simulable

* See also: Matchgates, 1D Tensor Networks,

* The Near-Stabilizer/Clifford regime has promising algorithms for
simulating large systems with small-ish amounts of magic

* The study of magic resource distillation/conversion is well motivated
by Fault-Tolerant Quantum Computing

Not Covered:

 Many more results on monotones like SRE by others

« /X-calculus applied to e.g. Stabilizer Rank simulators

« The A polytope and simulation schemes based thereon

* Applications in Real Physics™
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